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EXTENDED ABSTRACT

Aim of the study

The study of the specific needs of drivers with disabilities and the development of 
universal design measures in the transport system have become important fields of 
research. The aim of the present work was to study how drivers with and without reading 
disabilities (e.g., dyslexia) manage visual and auditory messages while performing a car 
following task. According to previous research, adults with dyslexia are still struggling
with the reading of text messages in traffic signs while driving (e.g., Tejero, Insa, & Roca, 
in press; Roca, Tejero, & Insa, 2018). However, the previous studies focused on the 
processing of visual information. In the current study, we analyze the potential use of oral 
messages to complement the traffic information given to drivers with and without 
dyslexia in Variable Message Signs (VMS).
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P O S T E R S

Background 

A quick and accurate acquisition of information from traffic signs or in-vehicle systems can 
be critical for traffic safety. Unfortunately, some individual differences (e.g., a reading 
disability) can affect the identification of such messages and, as a result, a driver can 
misunderstand the situation and make a wrong decision. The present work focuses on
dyslexia, a neurocognitive disorder affecting the learning and use of the reading skills. People 
with dyslexia may read more slowly or make more errors, especially in high-demanding 
situations. In addition, adults with dyslexia may as well show poor performance in other tasks 
involving attention (e.g., Bosse, Tainturier & Valdois, 2007; Bogon et al., 2014).

Reading a traffic sign while keeping appropriate control of the vehicle can be conceived as a 
sort of dual task (e.g., when the driver has to read text displayed on a traffic sign and, at the 
same time, has to keep a safe following distance). Visual and attentional resources are
required by both tasks, and, consequently, such a dual-task will require increased visual and 
attentional demands, as compared to the individual tasks. Therefore, considering the reading 
and the attentional difficulties of the people with dyslexia, reading written messages while 
driving can be especially challenging for them.

Previous research on dyslexia and driving has focused on the processing of information 
received via the visual system (e.g., Tejero, Insa, & Roca, in press; Roca, Tejero, & Insa, 
2018). Regarding the use of the auditory channel, using oral messages to complement text 
in traffic signs could be a potential countermeasure to help drivers’ with dyslexia improve 
the acquisition of information. In fact, such a measure might potentially benefit any driver,
with or without dyslexia, in non-optimal attentional or perceptual driving conditions (see, for 
example, Ghirardelli & Scharine, 2009; Liu, 2001; but see also Wickens & Gosney, 2003). 
Interestingly, there is also some evidence that drivers prefer the auditory modality for some 
messages, and even more, they remember the message better if it is received via the auditory 
than the visual system e.g., those related to the route guidance (Dalton, Agarwal, Fraenkel, 
Baichoo, & Masry, 2013). In consequence, our hypothesis was that, not only drivers with 
dyslexia, but also normally reading drivers, would benefit from the availability of 
complementary audio versions of traffic sign content, which would be reflected both on 
measures of the processing of the message and driving performance.

Method

A group of twenty adults with dyslexia, and a group of twenty normally reading 
individuals (matched in sex, age, and IQ) participated in a driving simulation experiment.
Their age ranged from 18 to 47 years (mean = 24.8). All the participants were native in 
Spanish. We used a Carnetsoft driving simulator (https://www.rijschool-simulator.nl/).
Participants drove along a route in a motorway environment, where a series of VMS
displayed messages written in Spanish, and they had to complete two tasks at the same time: 
a car-following task and a reading task. 
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Regarding the first task, they were instructed to drive in the right lane and keep a constant 
distance to a preceding car (about 50 meters), which travelled at a speed of 80 km/h or 100 
km/h. Critically, every time the participant was at 350 meters from a VMS (a distance at 
which the VMS was not legible yet), the leading car started to quickly decelerate from 100 
to 80 km/h, with a deceleration rate that was different in each trial. Therefore, participants 
had to adapt their distance to the preceding car accordingly with such deceleration, while 
approaching the VMS and trying to read its content.

In addition to the car-following task, participants were also asked to read the messages 
displayed on the VMS in order to classify the message as a ‘keep-lane message’ (i.e., a 
VMS informing on circumstances that would not require a lane change, such as 
‘MANDATORY RIGHT LANE’) or a ‘change-lane message’ (i.e., a VMS informing on 
circumstances that would require a lane change, such as ‘MANDATORY LEFT LANE’).
They were instructed to respond as far as possible from the VMS, without making errors,
and maintaining driving performance. There were eight different messages, four of them
were ‘keep-lane messages’ and the other four were ‘change-lane messages’. The required 
response was pressing a right lever (keep-lane) or a left lever (change-lane), which were 
located behind the steering wheel.

Task trials were defined as the sections beginning at the time when the preceding car was at 
350 m from a VMS, and ending at the time when the driver’s manual response to the VMS
was initiated or, if no response occurred, at the time when the driver’s vehicle was just at the 
place where the VMS was posted. Each participant completed the experimental driving 
task twice, presented in a counterbalanced order by participant: a) one in which the 
messages were displayed on a VMS as previously described (visual condition); and b) 
another one in which the message displayed on the VMS was additionally sent as an 
auditory message, starting just a few seconds before it was possible read the VMS (visual
& auditory condition). In each of these two task conditions, 24 trials (8 messages x 3 
repetitions) were randomly presented for each participant (48 trials in total). Before the 
experimental trials, the participants completed a training session on the driving task and 
a block of practice trials of the message classification task separately.

Separate ANOVA with Task condition, as a within-subject factor (visual versus visual &
auditory), and Group, as a between-subject factor (with dyslexia versus without dyslexia),
were performed for three different measures: response accuracy (% of correct classification 
of the messages), mean response distance (meters from the VMS at which correct responses
were given), and the standard deviation of the distance to the preceding car (the higher the 
standard deviation, the worse the participant’s ability to adjust his/her speed to the leading 
vehicle). Post-hoc analyses were also performed to test the significance of differences among 
particular conditions.

Results & discussion

Accuracy in the classification of the messages was overall better (p<.001) in the visual &
auditory condition (98.1 % of correct responses) than in the visual condition (95.2 %), with 
no significant differences between the two groups, nor an interaction effect. Therefore, the 
availability of an oral version of the message displayed on the VMS had a general positive 
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impact on task performance in terms of accuracy, both for the participants with and without 
dyslexia.  

Regarding the mean response distance, the interaction Task condition x Group produced a 
significant effect (p=.009). As expected, in both groups, the visual & auditory condition 
produced an overall mean distance longer than the visual condition did (p<.001). Importantly,
the mean response distance in the visual condition (with no oral message) was 18.5 m longer 
for the participants with dyslexia than for the participants without dyslexia (p=.02),
suggesting that the former participants are at a disadvantage in processing text messages 
displayed on VMS. In contrast, such differences virtually vanished in the visual & auditory 
condition (the difference between the two groups within this condition was 1.9 m, no 
statistically significant).

As for driving performance, the standard deviation of the mean distance to the preceding 
car during the trial was higher in the visual condition (6.9) than in the visual & auditory 
condition (6.0) for all participants (p<.001), with no differences between the two groups, 
nor an interaction effect. Since the participants were told to keep a steady distance, this 
result suggest that the addition of the oral version of the message also had a positive 
impact on the driving performance, allowing better adjustment of the vehicle speed while 
the leading car was decelerating.

In short, all the participants, with and without dyslexia, not only responded at a longer 
distance when an auditory message was presented together with the visual message, but 
they were also more accurate in completing the reading task and more able to keep a
steady distance to the preceding car. Moreover, the addition of the oral message seemed to 
cancel the disadvantage of drivers with dyslexia when processing single text messages 
displayed on VMS. Therefore, these results suggest that combining visual and oral 
messages can be a useful measure aimed at drivers with or without reading difficulties.

In our view, this study may have relevant potential applications to improve traffic safety 
and fluidity, not only for the reading-impaired individuals, but also for any driver in non-
optimal attentional or perceptual driving conditions.
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EXTENDED ABSTRACT 
 

In this work, we present an efficient monocular method to estimate the point of gaze 
(PoG), considering that it can lie on different screens around the user, and to track the user’s 
face in the 3D space, for driver behavior analysis. Typically, state-of-the-art eye gaze 
estimation techniques obtain the PoG on one screen, only. However, in the case of driving 
simulators there are usually more than one, e.g., one for the front view, one for each side 
view, another one for the dashboard, etc (Figure 1). As there can be different objects of 
interest at different locations of each screen, the accurate estimation of the gaze fixations and 
saccades derived from the PoG on each screen is important for driver behavior analysis [1]. 
Additionally, it is also preferable to simplify the installation and calibration of sensors and 
to reduce the power consumption as much as possible, avoiding alternative possibilities 
such as placing a dedicated PoG estimator for each screen. Thus, we only consider one 
monocular camera in front of the driver and a humble CPU, e.g., those included in an 
embedded PC or a smartphone. 

 
Figure 1. Multi-screen simulator setup for driver behavior analysis, based on human-

machine interaction, including PoG and 3D face tracking. 
 
In automotive platforms, visual features of the face and eye regions of a driver provide 

cues about their degree of alertness, perception and vehicle control. Knowledge about driver 
cognitive state helps to predict, for example, if the driver intends to change lanes or is aware 
about obstacles and thereby avoid fatal accidents. These systems use eye tracking setups 
mounted on a car's dashboard along with computing hardware running machine vision 
algorithms, with computational capabilities far below from those of off-the-shelf desktop 
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PCs. Major sources of error in automotive systems arise principally from platform and user 
head movements, variable illumination, and occlusion due to shadows or users wearing 
glasses, which need to be handled robustly but also efficiently due to the computational 
constraints. 

The current state of the art of eye gaze estimation systems applied to automotive 
platforms includes different kind of approaches and uses. There are approaches that 
consider eye movement features (e.g., fixations, saccades, smooth pursuits, etc) for deriving 
driver cognitive states, such as driver distraction [2]. Other approaches apply classification 
techniques to eye images related with different gaze zones, to detect where the driver is 
looking at while driving [3]. There are also approaches that track facial features, 3D head 
poses and gaze directions relative to the car geometry to detect eyes-of-the road condition 
of the driver [4]. Other approaches study the driver’s gaze behavior (e.g., glance frequency 
and glance time) to evaluate the driving performance when they interact with other devices 
(e.g., a portable navigation system) while driving [5]. Finally, there are also approaches that 
study the dynamics between head pose and gaze behavior of drivers to predict gaze locations 
from the position and orientation of a driver's head [6] or to categorize different kind of 
driver behaviors while driving [7]. 

Our main motivation in this work is to increase the grade of sophistication of all this 
kind use cases by developing a more accurate, more robust, but still efficient method for 
estimating the head pose and eye gaze of drivers, compared to previous approaches. 

Figure 2 shows the general overview of the workflow of our approach, where the input 
is a monocular image grabbed by one camera in front of the driver and the output are his/her 
estimated PoG with respect to the considered screens and his/her facial mesh in the 3D 
space, which includes information about his/her head position, orientation and expression. 

 
Figure 2. Workflow of the multi-planar PoG estimation and 3D face tracking approach. 

 
This approach is a hybrid between efficient appearance-based and model-based 

computer vision procedures. The appearance-based procedures rely on trained classification 
and regression models (face detection, landmark detection and gaze vector estimation), 
while the model-based (face tracking and face model adjustment), rely on geometric 3D 
graphical models. The main procedures are explained next: 

Face detection / tracking: For the localization of the driver’s face region two stages 
are distinguished: (1) the initial face detection and posterior re-detections when the tracking 
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is lost, and (2) the in-between face tracking. This is relevant as tracking algorithms typically 
are more efficient and require less memory than those for face detection. Thus, the face 
detection algorithm is only activated when the driver’s face is not being tracked. The 
detection is done with the SSD deep neural network [8], which has shown to be robust under 
challenging conditions, trained specifically with multiple-pose faces, while the tracking is 
based on CLNF [9], applied at landmark level, which has a good balance between 
computational cost and localization reliability and stability. The landmark distribution is 
constrained by a parametric 3D face model, to avoid impossible human facial shapes. The 
tracking is considered to be lost when the image under the face region does not correspond 
to a human face, according to the learned face pattern. 

Landmark localization: As explained for the previous procedure, CLNF is applied for 
the face landmark localization once the driver’s face region is determined . 

3D face model fitting: A parametric 3D model is adjusted to the localized landmarks 
using a sequence of three optimization stages. This process estimates the face position, 
shape and gesture parameters (in that order) minimizing the error distance between the given 
landmarks and the projection of the 3D vertices, assuming a full perspective projection. 

3D gaze vector estimation: Once the different facial parts are localized, the image 
regions around both eyes are extracted, and their shape and intensity distributions are 
normalized, so that a deep neural network, based on [10], can infer the corresponding 3D 
gaze vectors. Then, an overall gaze vector of the user is calculated as the mean vector of 
both eyes with its origin at the midpoint of both eyes. 

3D scene reconstruction: The different elements that compose the scene (camera, face, 
gaze vectors, screens) are placed in the same space, where the origin is located at the 
camera. In this context, we can estimate the PoG related to the considered potential targets, 
i.e., the screens. Thus, the intersections of the overall 3D gaze vector with the planes that 
contain each screen is calculated with an efficient line-plane intersection geometric 
procedure. 

Screen-related PoG estimation: Finally, a point-in-polygon strategy [11] is applied to 
see if any of the calculated PoGs lies within any of the screens. In the case that the overall 
gaze vector does not intersect any screen, we provide the PoG on the same plane as that of 
the closest screen. 

We have done some experiments to evaluate the PoG estimation method in different 
aspects: 

Accuracy: We have compared the PoG with respect to several target points located 
around the screens with and without an additional calibration stage. Experiments show how 
there is a reduction in the error when the data is calibrated, but the error for the uncalibrated 
estimations are also reasonable in automotive applications. 

Efficiency: We have integrated it in and iPhone SE (in which the Operating System is 
iOS 10.3.2, the core of our program is in C++ and the interface in C#) and in a Docomo (in 
which the Operating System is Android 6, the core of our program is in C++ and the 
interface in Java). The measured FPS in each are 30 and 20 respectively.  

One of the advantages of this method is that it can be integrated in embedded hardware 
systems with low computational capabilities, with sufficient robustness for driver behavior 
analysis. Future work will principally focus on optimizing the deep neural network designs 
to further improve their efficiency in CPUs. 
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EXTENDED ABSTRACT

The aim of this research is to enhance performance of vehicle safety by comprising 
driver’s physiological state alert function in cooperation with artificial intelligence
(hereinafter; AI) technology for autonomous driving [1] [2] [3]. Signal processing 
technology was used to identify driver’s physiological state, which technologies are image 
processing and pattern recognition as well as neural network. One of candidate of pattern 
recognition method is AdaBoost [4] which is known as boosting method in machine learning 
area. The other is Kohonen neural network (hereinafter; KNN) which uses self-organizing 
map [5]. Therefrom, this research reviewed previous research of driver’s states monitoring 
technology. Then this research refined previous research of analytical results of traffic 
incidents data collected by Internet survey on real-world experience basis [6]. The number 
of traffic fatalities as of 2017 [7] has declined under 3, 700, 69 years after, because of 
enhancement of vehicle safety as well as comprehensive safety counter-measure of elderly 
person. However, the number of injuries has still exceeded some 0.5 million. Further 
enhancement of road traffic safety is urgent challenge to create sustainable mobile society.

Research of driver’s distraction as well as drowsiness state has started in the middle of 
1990’s by ASV project in Japan, and, also AWAKE and AIDE project in EU Framework 
Programme. After that many research with regards to drowsiness has been executed, any 
practical drowsiness detection method may be introduced into production vehicle. Several 
cases as to face direction detection and eye closing detection method are introduced into 
production vehicle as well as attention assist system. There is few case as to anger state 
detection. Currently lots of automakers have been developing autonomous vehicle in 
cooperation with AI. These autonomous vehicles may enhance safety function by judging 
comprehensive driver’s physiological state, vehicle control status and road environment 
situation as well as alerting imminent risk information to a driver. In the sense, driver’s 
physiological detection may be key issue to be incorporated into driver’s physiological states 
adaptive driving safety function, which leads enhancement of safety of autonomous driving 
system. 

According previous research, root cause of traffic accidents is almost human error 
which is 90% [8] [9] [10]. This research reviewed driver’s non-normal physiological states 
by analyzing real world traffic incidents data collected by Internet survey. Results of 
analysis based on this survey showed that major non-normal psychosomatic states include 
“haste” (26.6%), “distraction” (26.5%), drowsiness (4.6%) and anger (3.1%). Therefrom, 
this research focused driver’s distraction, drowsiness and anger states as higher potential 
risks in traffic accidents. According previous research [11] [12], changes in heart beat and 

P O S T E R S

249



eye movement are often identified as alternative characteristics of driver’s distraction. Also, 
facial expression is identified as alternative characteristics of drowsiness and anger.

Signal processing may be indispensable technology to detect driver’s non-normal 
physiological states. In order to classify driver’s cognitive distraction states, this research 
used mock-up type driving simulator.

Monitor lead method which includes standard limb lead (II) and measurement with 3 
chest electrodes was introduced, which can detect ECG waveform. Data was acquired every 
5 seconds, and data set was sampled at 60 Hz. Heart rate and heart rate RRI (HR-RRI) as 
one of alternative of driver’s cognitive distraction were calculated by measuring an interval 
of R waves (RRI) in an ECG waveform.

Eye movement as well as head movement were tracked by two camera system which is 
called “faceLAB (Australian make)”. This research adopted standard deviations
(hereinafter; SD) of gaze angle as well as head rotation angle as alternative of driver’s 
cognitive distraction [13] [14] [15]. Candidate physiological signals were validated by 
confirming differences between ordinary driving and cognitive loads which were 
conversation and arithmetic. According previous study [13] [14], frontal focal points of eye 
sight were scattered widely to peripheral area during ordinary driving, frontal focal points 
were concentrated within a narrower range when cognitive loads were imposed. Average 
value of SD of gaze angle decreased by 12.2% by cognitive loads compared with ordinary 
driving. This agreed with the trend of previous research [13] [14] [15]. However, SD of 
head rotation angle in cognitive loads condition decreased by 62.8% compared with 
ordinary driving. From the results SD of gaze angle and head rotation angle were judged as 
available as features to classify cognitive distraction. When cognitive loads of arithmetic 
and/or conversation were imposed to the participants, pupil dilated by acceleration of the 
autonomic nerve. Average value of pupil diameter by cognitive loads increased by 14.1% 
compared with ordinary driving. From results of SD of combined gaze angle and head 
rotation angle and pupil diameter were concluded as available for features to classify 
cognitive distraction. Average heart rate increased approximately by seven beats per minute 
when cognitive loads were imposed. The order of this result agreed with previous research 
[11] [12]. Average heart rate RRI imposed by cognitive loads decreased by 9.5% compared 
with ordinary driving. This change is believed to be a result of higher heart rate caused by 
cognitive loads. From the above results, average value of heart rate RRI was concluded as 
available as a feature to classify cognitive distraction. From the above validation, this 
research selected SD of gage angle and head rotation angle, pupil diameter and heart rate 
RRI (HR-RRI) as features to classify driver’s cognitive distraction.

This research adopted AdaBoost to classify a state of driver’s cognitive distraction, 
which may have advantages of high classification performance, rapid recognition process 
time and expandability of recognition features. Learning by AdaBoost makes different 
classifiers while continuously weighting of the learning data. After weighted majority 
decision is executed, multiple classifiers create final function of classification. Those 
individual classifiers is called as weak classifier, while final classifier is called as strong 
classifier. By using SD of gaze angle and SD of head rotation angle, average value of pupil 
diameter, and, average value of HR-RRI as input data for AdaBoost, this research executed 
learning and evaluation of classification of driver’s cognitive distraction. From calculation 
by means of using AdaBoost algorithm, classification performance showed that top common 
result in average accuracy was 91.5 percent in arithmetic load, which classification features 
were combination of all three features of Visual Information (SD of gaze angle and head 
rotation angel) plus PD (Pupil Diameter) plus HR-RRI. Second top common in average 
accuracy was 91.0 percent in conversation load of all three features. From the results, 
combination of all three features by using AdaBoost with arithmetic loads showed the 
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highest classification performance. Therefrom pattern recognition method called AdaBoost 
may be applicable to identify driver’s cognitive distraction. 

In order to identify Driver’s drowsiness and anger states, this research adopted Kohonen 
neural network [16] [17] [18], which uses self-organizing map. This research tried to utilize 
facial expressions of driver to classify driver’s drowsiness and anger. According previous 
research [19], human emotion may be represented by six facial expressions, which are 
“ordinary”, “drowsiness,” “anger”, “sorrow”, “delight” and “surprise”. Therefrom, this 
research adopted two types of facial expression as alternative characteristics to identify both 
driver’s drowsiness and anger by using KNN, and defined six types of facial expression as 
self-organized map. Normalization of orientation and size of face was done by using 
coordination of eyes and nose. This research took 6 pictures for 6 facial expressions per one 
participant. 240 out of 288 pictures of facial expression was selected. 40 facial expressions 
were allocated for each facial expression. Then classification experiment by means of using 
KNN was executed. At the same time, subjective evaluation for six facial expressions was 
executed by the same participant. As one of improved method, this research introduced 
classification by Mahalanobis' distance [20].

Classification accuracy of drowsiness 93.8% which was second top in common among 
6 facial expressions. However, amount of subjective evaluation of drowsiness was 81.3% 
which was fourth top in common. Classification accuracy of anger was 83.3%, which was 
fourth top in common among 6 facial expressions. Amount of subjective evaluation of anger 
was 91.7%, which was third top in common. Therefore, this examination by means of using 
Kohonen neural network was said as practical to classify states of both drowsiness and 
anger.
Accordingly, this examination adopted two kinds of classification accuracy between facial 
expression and subjective evaluation for states of drowsiness and anger. This method of 
classifying both driver’s drowsiness and anger states may be applicable to driver’s 
physiological states adaptive driving support safety function which should be included one 
of contents of artificial intelligence (AI) unit for autonomous driving in near future.

This research reviewed driver’s non-normal physiological states by analyzing real world 
traffic incidents data collected by Internet survey. This research introduced two types of 
signal processing method to identify classification accuracy of driver’s cognitive distraction 
and drowsiness as well as anger states, which algorithm were AdaBoost and Kohonen neural 
network. Classification accuracy of these two methods indicated higher amount which could 
be incorporated into driver’s physiological states adaptive driving support safety function
in cooperation with artificial intelligence for autonomous driving.
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Background 
 

Highly automated driving is projected to change the global transportation system in 
the future, taking the human driver out of the control loop of vehicles [1]. However, 
systems employed today still require a human to monitor the automation, changing a 
driver’s task from actively controlling the vehicle to a monitoring role [2]. Research 
shows that drivers frequently engage in secondary tasks and do not fulfil the required 
monitoring role [3][4]. This distraction from drivers’ monitoring task leads to decreased 
detection of automation failures and a lack of situation awareness in takeover situations 
[5][6]. Vehicle manufacturers have implemented systems that aim to ensure continuous 
monitoring, e.g. through requiring the driver to have regular contact with the steering-
wheel or through monitoring the driver’s attention and turning of the automation if 
inattention is registered [7][8]. Existing safety systems penalize inattention, but do not 
increase drivers’ engagement in the monitoring task. 

A relatively new field of study in the area of automated driving has been the 
implementation of shared control or maneuver control [9][10][11]. Under this proposed 
control scheme, the basic driving task, i.e. control of speed and trajectory of the vehicle, is 
controlled by the automation. Advanced driving parameters, such as following distances, 
lane choice, and targeted maximum speed can be controlled by the driver through a 
human-machine interface (HMI). Shared control allows the driver to influence the driving 
style of the automation and to initiate driving maneuvers without taking over complete 
control of the vehicle. In theory, the concept encourages drivers to stay engaged in the 
driving task, although the vehicle automation is activated. A first implementation of this 
concept is Tesla’s lane change assist, which allows drivers to initiate a lane change 
maneuver during highly automated driving [12]. 

In this driving simulator study, we investigated how the ability to adjust driving 
parameters and initiate driving maneuvers in highly automated driving influences the 
subjective experience of drivers when compared to driving a completely automated 
vehicle without maneuver control, and self-driving without any form of automation. We 
hypothesized that drivers’ perceived level of control and perceived responsibility for 
potential crashes would be significantly increased through the implementation of 
maneuver control when compared to automated driving without maneuver control. We 
further hypothesized that drivers would use maneuver control to adjust the vehicle’s 
following distances to a value that correlates with their preferred following distance in 
self-driving.  
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Method 
 
A convenience sample of 42 participants (28 female) was recruited from the 

Leuphana University Lüneburg. Participants were on average M = 22.36 years old (SD = 
3.36), had an average driving experience of M = 4.5 years (SD = 2.9) and had driven an 
average of M = 30,378 kilometers since acquiring their license. The study was conducted 
in a fixed-base driving simulator with a projected field of view of 110°x30° (3072x768 
pixels), running version 1.4 of the SCANeR Studio driving simulator software from Oktal. 
A joystick with a 3D-printed top was installed in the center console of the simulator as the 
HMI that allowed participants to initiate maneuvers and adjust driving parameters. 

In a within-subject repeated measures design, the level of control that participants 
had over the vehicle was varied threefold. Participants either had complete control over 
the vehicle (full control), were driving highly automated but could use the joystick to 
adjust driving parameters or initiate maneuvers (maneuver control), or had no control over 
the vehicle as it was driving fully automated (no control). Participants were presented 
with 18 traffic situations on city-, rural-, and highway-roads. 12 of these situations were 
designed to allow participants to either conduct a driving maneuver themselves (full 
control condition), initiate a maneuver through use of the joystick HMI, or monitor a 
driving maneuver conducted by the automation (no control). Driving maneuvers in these 
12 situations consisted of lane changes and take-over maneuvers in different traffic 
environments. In 6 more situations, participants were following another vehicle and could 
either adjust their following distance through the use of the brake and gas pedal (full 
control), through using the joystick HMI (maneuver control), or monitor the following 
distance without the possibility to adjust it (no control). All 18 traffic situations were 
presented in one block for each condition (full control vs. maneuver control vs. no 
control), while the sequence of the blocks was randomized. After each block of 18 traffic 
situations, participants rated their subjective experience during the block on the disco-
scale (Table 1) which measures discomfort in automated driving through 15 items on a 5-
point Likert scale [13]. Furthermore, time headway following distances were registered 
for the full control and maneuver control block of the experiment. Time headway 
following distances in the no control condition were fixed to 3 seconds for all participants. 

 
Table 1 Disco-scale 

Items  
(Answered on a 5-point Likert scale (“strongly disagree” “strongly agree”)) 

1. I can move unconcerned using the system. 
2. I feel endangered by the system. 
3. With more clearance distance my journey would be more comfortable. 
4. I felt that I could always intervene in time. 
5. Using the system is unpleasant. 
6. The system relieves me as a driver. 
7. I was always in control of the situation. 
8. I felt safe during the drive. 
9. I felt the situation was risky. 

10. There was enough safety clearance to travel comfortable. 
11. I found the driving situation to be uncomfortable. 
12. If an accident happens I am responsible. 
13. The system is an added burden. 
14. In my opinion the system increases safety. 
15. I perceive driving myself as less strenuous. 
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Results 
 
While the disco-scale consists of 15 items, only the results on perceived ability to 

control the vehicle (item 7), ability to intervene in time (item 4), and potential 
responsibility in case of a crash (item 12) are presented in this extended abstract. When 
asked to rate their ability to control the vehicle on a 5-point Likert-scale (1 to 5), the full 
control condition was rated highest for controllability (M = 3.48, SD = 1.11), followed by 
the maneuver control condition (M = 2.50, SD = 1.33), and the no control condition (M = 
1.52, SD = 0.94). A repeated measures ANOVA was calculated to test the effect of level 
of the independent variable on the perceived level of control. As Mauchly’s Test revealed 
a violation of the assumption of sphericity for the main effect of control (χ2(2) = 9.51, p < 
.01), Greenhouse-Geisser corrected degrees of freedom were used (ε = .83). Control 
conditions were rated as significantly different on the perceived control item (F(1.65, 67.68)= 
38.18; p < .01; p

2 = .48). Post-hoc tests using Bonferroni correction for multiple 
comparisons revealed significant differences between all levels of control (all p < .01). 

Participants further rated if they thought they could intervene in time during the 
traffic situation. Perceived ability to intervene was again highest in the full control 
condition (M = 3.62, SD = 1.17), followed by rating in the maneuver control (M = 2.29, 
SD = 1.24), and no control condition (M = 1.76, SD = 1.27). A repeated measures 
ANOVA revealed significant differences between perceived ability to intervene (F(2, 82)= 
26.24; p < .01; p

2 = .39) depending on the level of control. Bonferroni corrected post-hoc 
tests revealed that there is a significant difference in the level of perceived ability to 
intervene between the full control and the maneuver control condition (p < .01), as well as 
the full control and the no control condition (p < .01). There was no difference in 
perceived ability to intervene between the maneuver control and no control condition (p = 
.069). 

When asked if they would feel responsible for a potential crash with the vehicle, 
participants felt most responsible in the full control condition (M = 3.45, SD = 1.12), 
followed by the maneuver control (M = 3.14, SD = 1.10), and no control condition (M = 
2.12, SD = 1.31). A repeated measures ANOVA revealed significant differences between 
conditions F(2, 82)= 20.51; p < .01; p

2 = .33). Post-hoc test with Bonferroni correction 
revealed that perceived responsibility in case of a crash differs between the full control 
and the no control condition, as well as between the maneuver control and the no control 
condition (both p < .01). There was no significant difference in perceived responsibility 
between the full control and maneuver control condition. 

Time headways from traffic situations in which the following distance to a lead 
vehicle could be adjusted were found to correlate significantly between the full control 
and maneuver control conditions (r = .38 to .72, all p < .05). 

 
Conclusion 

 
The ability to adjust driving parameters and initiate maneuvers in highly automated 

driving has positive effects on the subjective experience of drivers. Participants in this 
study felt more in control of the vehicle in driving situations with maneuver control when 
compared to highly automated driving without this ability. Furthermore, maneuver control 
increased the perceived level of responsibility in case of a crash, to levels that do not 
significantly differ from self-driving (full control condition). This high level of perceived 
responsibility could help to keep drivers of highly automated vehicles engaged in the 
driving task. While our results on drivers’ perceived ability to intervene indicate that they 
do not perceive the joystick HMI as a tool to use in case of safety critical intervention, the 
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effect of maneuver control on take-over behavior needs to be researched in future studies. 
The results of a significant correlation between following distances in self-driving (full 
control) and adjusted following distances in maneuver control conditions indicates that 
drivers use the ability to adjust driving parameters to individualize the driving style of the 
automated vehicle to align with their own preference in self-driving. 
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