
1

Efficient monocular point-of-gaze estimation on multiple screens and 3D face
tracking for driver behaviour analysis

Jon Goenetxea *, Luis Unzueta, Unai Elordi, Juan Diego Ortega, Oihana Otaegui

Intelligent Transport Systems and Engineering Department, Vicomtech, Paseo Mikeletegi 57, Donostia, Spain
*jgoenetxea@vicomtech.org

Abstract: In	this	work,	we	present	an	efficient	monocular	method	to	estimate	the	point	of	gaze	(PoG)	and	the	face	in	the	3D	
space	of	multi-screen	driving	simulator	users,	for	driver	behaviour	analysis.	It	consists	in	a	hybrid	procedure	that	combines	
appearance	and	model-based	computer	vision	techniques	to	extract	the	3D	geometric	representations	of	the	user’s	face	
and	gaze	directions.	These	are	placed	in	the	same	virtual	3D	space	as	those	of	the	monocular	camera	and	the	screens.	In	
this	context,	the	intersections	of	the	overall	3D	gaze	vector	with	the	planes	that	contain	each	screen	is	calculated	with	an	
efficient	line-plane	intersection	geometric	procedure.	Finally,	a	point-in-polygon	strategy	is	applied	to	see	if	any	of	the	
calculated	PoGs	lies	within	any	of	the	screens,	and	if	not,	the	PoG	on	the	same	plane	as	that	of	the	closest	screen	is	
provided.	Experiments	show	that	the	error	for	the	obtained	PoG	accuracy	is	reasonable	for	automotive	applications,	even	
in	the	uncalibrated	case,	compared	to	other	state-of-the-art	approaches,	which	require	the	user’s	calibration.	Another	
advantage	is	that	it	can	be	integrated	in	devices	with	low	computational	capabilities,	such	as	smartphones,	with	sufficient	
robustness	for	driver	behaviour	analysis.	

1. Introduction
Typically, state-of-the-art eye gaze estimation

techniques obtain the point of gaze (PoG) on one screen, only
[1]. However, in the case of driving simulators there are
usually more than one, e.g., one for the front view, one for
each side view, another one for the dashboard, etc (Fig. 1).
Besides, there can be different objects of interest at different
locations of each screen and obtaining the gaze fixations and
saccades, derived from the PoG, accurately on each screen is
important for driver behaviour analysis [2]. Additionally, it is
also preferable to simplify the installation and calibration of
sensors and to reduce the power consumption as much as
possible, avoiding alternative possibilities such as placing a
dedicated PoG estimator for each screen. Thus, in our context,
we only consider one monocular camera in front of the user
and a humble CPU, e.g., those included in an embedded PC
or a smartphone.

Fig. 1. Multi-screen simulator setup for driver behaviour
analysis, based on human-machine interaction, including
PoG and 3D face tracking

In automotive platforms, visual features of the face
and eye regions of a driver provide cues about their degree of
alertness, perception and vehicle control. Knowledge about
driver cognitive state helps to predict, for example, if the
driver intends to change lanes or is aware about obstacles and
thereby avoid fatal accidents. These systems use eye tracking
setups mounted on a car's dashboard along with computing
hardware running machine vision algorithms, with
computational capabilities far below from those of off-the-
shelf desktop PCs. Major sources of error in automotive
systems arise principally from platform and user head
movements, variable illumination, and occlusion due to
shadows or users wearing glasses, which need to be handled
robustly but also efficiently due to the computational
constraints.

The current state of the art of eye gaze estimation
systems applied to automotive platforms includes different
kind of approaches and uses. There are approaches that
consider eye movement features (e.g., fixations, saccades,
smooth pursuits, etc) for deriving driver cognitive states, such
as driver distraction [3]. Other approaches apply
classification techniques to eye images related with different
gaze zones, to detect where the driver is looking at while
driving [4]. There are also approaches that track facial
features, 3D head poses and gaze directions relative to the car
geometry to detect eyes-of-the road condition of the driver [5].
Other approaches study the driver’s gaze behaviour (e.g.,
glance frequency and glance time) to evaluate the driving
performance when they interact with other devices (e.g., a
portable navigation system) while driving [6]. Finally, there
are also approaches that study the dynamics between head
pose and gaze behaviour of drivers to predict gaze locations
from the position and orientation of a driver's head [7] or to
categorise different kind of driver behaviours while driving
[8].

Our main motivation in this work is to increase the
grade of sophistication of all this kind of use cases by
developing a more accurate, more robust, but still efficient

2

method for estimating the head pose and eye gaze of drivers,
compared to previous approaches. We paid special attention
to the case of multi-screen simulators, where the relation
between the PoG and the rendered graphics can be directly
established, and therefore, richer data could be extracted for
behaviour analysis. In order to do so, it is necessary to relate
the 2D image projections of the driver’s facial and ocular cues,
captured from the monocular camera, with the 3D space.
Ideally, this would require not only obtaining the person’s 3D
eye gaze vectors from the images, but also the person’s 3D
eye positions and the surrounding potential targets’
geometries in the same 3D space, the camera characteristics
from which that space is observed, and an additional
calibration stage done by the user. However, in many
applications it is not easy to obtain all these data. This is the
case of automotive applications, where it is not comfortable
for the driver to spend time calibrating the eye gaze system.
Other important factors are that the estimated gaze vector
should have a low level of noise, but it should still be sensitive
to quick eye movements, and that the estimated gaze vector
should be robust to head movements, which in the case of
driving, normally happen many times.

Our approach to tackle all these factors consists in a
hybrid procedure that combines appearance and model-based
computer vision techniques to extract the 3D geometric
representations of the user’s face and gaze directions. These
are then placed in the same virtual 3D space as those of the
monocular camera and the screens. This reconstructed virtual
3D world is where the driver’s behaviour can then be
analysed, based on the estimated PoG on the different targets
of the scene and the 3D head pose, without necessarily
requiring calibration data. It has been designed to have an
acceptable balance between accuracy, robustness and
efficiency, so that it can be integrated into devices with low
computational capabilities that might be used in vehicles.

The rest of the paper is organised as follows. Section
2 introduces the proposed hybrid system. Section 3 illustrates
details about our experiments and presents some discussions
about them. Section 4 concludes the paper.

2. Methodology
The methods to estimate the eye gaze from monocular

images and videos can be categorised in two types of
approaches: model-based [5][9] and appearance based
[4][8][10][11][12][13][14]. Next, we study more in detail the
pros and cons of each and then we explain our proposed
hybrid approach.

2.1. Model-based vs appearance-based

The model-based approach relies explicitly in 3D

graphical models that represent the geometry of the eye
(typically as spheres) which are fitted to the person’s detected
eye features in the image (typically, the iris and the eye
corners). Thus, the fitted 3D model allows inferring the 3D
eye gaze vector, which is then used to deduce where the
person is looking at. These methods imply some drawbacks,
such as: They require to precisely locate the iris of the eye in
the image; this is often impossible, for example when the
user’s eyes are not wide open, which is the normal case. In
order to estimate the eye gaze direction, they need the user’s
head coordinates system as reference. Therefore, the success

of these methods is highly dependent on the precision with
which the user’s head coordinates system has been localised.
Besides, although simple, they require an initialisation
scheme: the user needs to intentionally look at one or more
points on a screen. Otherwise, eye vectors cannot be obtained
with sufficient precision. In sum, since they are pure
geometric methods, their precision is strongly dependent on
the precision of the estimated eyeball and pupil centres.
However, common images do not enable to obtain this
information with high precision.

On the contrary, the appearance-based approach
establishes a direct relation between the person’s eye
appearance and the corresponding eye gaze data of interest
(e.g., the 3D eye gaze vector) by applying machine learning
techniques. Thus, a dataset of annotated images is used to
train a regression model, which is then used to deduce where
the person is looking at, when applied to the person’s eye
image extracted from the image.

In the last few years, the appearance-based methods
have been greatly benefited by the revolutionary results
obtained by the emerging deep learning techniques in
computer vision applications and have become the current
state of the art in the field. They allow to generalise much
better the learned relation between the eye appearance and the
corresponding eye gaze data than alternative machine
learning approaches (based on “handcrafted” image features
and “shallow” layered learning architectures), when a huge
dataset of annotated images is used for training. Typically,
hundreds of thousands or even millions of samples are used,
which may include real data [10][14], photorealistic synthetic
data [11][13] or even a mixture of both [12]. This way, eye
gaze direction estimation systems can obtain better accuracies
with people whose appearance has not been included in the
training of the regression model.

However, an effective eye gaze direction estimation
system does not only require obtaining accurate eye gaze data
from eye images, but it also requires applying properly the
eye gaze data to the environment, so that it is possible to
deduce where the person is looking at.

2.2. Hybrid approach

Fig. 2 shows the general overview of the workflow of

our approach, where the inputs are a monocular image
grabbed by one camera in front of the user, a parametric
deformable 3D face model (Fig. 3), the camera intrinsic
parameters and the screen geometries. The outputs are his/her
estimated PoG with respect to the considered screens and
his/her facial mesh in the 3D space, which includes
information about his/her head position, orientation and
expression. In this workflow, we distinguish three blocks: (1)
the 3D face model adjustment to the user’s face image, (2) the
normalisation of the 3D gaze estimation and (3) the
estimation of the eye gaze direction with respect to the targets.

The first block comprises computer vision procedures
to detect and track facial regions on the image, localise facial
landmarks and fit the 3D face model to those landmarks, by
optimising the following objective function:

 e = arg min!

"
[𝑑% − 𝑝 𝑓, 𝑤, ℎ, 𝒕, 𝒓, 𝒔, 𝒂 %]2"

%3! (1)

3

where:

• d = {d1, d2, d3, …} are the detected 2D landmark
positions.

• p= {p1, p2, p3, …} are the 2D projections of the
corresponding 3D deformable model vertices. p is a
function that depends on the camera parameters (f,
w, h) and on the parameters of the graphical object
(t, r, s, a). Function p represents the 2D projections
on a surface of vertices, which are 3D. The goal is to
minimise the distance between the detected 2D
landmark positions in the image and the vertices of
the projections.

• f is the focal length of the camera from which the
image was obtained.

• w is the image pixel width.
• h is the image pixel height.
• t= {tx, ty, tz} are the XYZ positions of the face model

with respect to the camera.
• r= {rx, ry, rz} are the roll-pitch-yaw rotation angles

of the face model with respect to the camera.
• s= {s1, s2, s3, …} are the shape-related deformation

parameters.
• a= {a1, a2, a3, …} are the action-related deformation

parameters.
• n is the number of 2D landmark positions.
• e is the residual error.

Fig. 3. A generic deformable 3D face model and some of its
deformation parameters compatible with our method

For the localisation of the user’s face region two stages

are distinguished: (1) the initial face detection and posterior

re-detections when the tracking is lost, and (2) the in-between
face tracking. This is relevant as tracking algorithms typically
are more efficient and require less memory than those for face
detection. Thus, the face detection algorithm is only activated
when the user’s face is not being tracked. The detection is
done with the SSD deep neural network [15], which has
shown to be robust under challenging conditions, trained
specifically with multiple-pose faces. The tracking is based
on CLNF [16], applied at landmark level, which has a good
balance between computational cost and localisation
reliability and stability. The landmark distribution is
constrained by a parametric 3D face model, to avoid
impossible human facial shapes. The tracking is considered
to be lost when the image under the face region does not
correspond to a human face, according to the learned face
pattern (see Algorithms 1 and 2 for further details).

Algorithm 1: Hybrid face model detection-tracking fitting
algorithm

Input: The image sequence I
Output: The face model parameters {t, r, s, a} that overlap the model to
the user’s face, throughout I
1: For each 𝐼% ∈ 𝑰 do
2: if Face detection needed then
3: Reset the face model parameters of the graphical model to the

neutral configuration
4: Run the face region detector in the image
5: Store the detected user’s face image patch and face region
6: else
7: Locate a stored face image patch in the image (via pattern

matching)
8: Verify that the located patch corresponds to a real face (via

pattern classification)
9: if Located face region contains a real face then
10: Store the located face region
11: end
12: end
13: if Face region available then
14: Run the face landmark detector in the face region
15: Adjust the 3D face model to the detected landmarks (Algorithm

2) → {𝒕, 𝒓, 𝒔, 𝒂}%
16: end
17: end
18: (Optional) Filter {t, r, s, a} with an appropriate approach for face

movements

	
	 	 	

	 	 	 	
	

Fig. 2. Workflow of the multi-planar PoG estimation and 3D face tracking approach

4

Algorithm 2: Three-stage face model adjustment algorithm
Input:
• Set of 2D landmark positions d in the image
• The relation list between the landmark and vertices
• The camera parameters {f, w, h}
Output: The face model parameters {t, r, s, a} that overlap the model to
the user’s face
1: Set the deformation parameters {s, a} to zero
2: Convert the current parameter values to the normalised range

workspace
3: Optimise, using for example the Levenberg-Marquardt algorithm

[17][18], Eq. (1) with {t, r} as the only variables
4: Optimise, using for example the BFGS algorithm [19][20][21][22],

Eq. (1) with {s} as the only variables
5: For each 𝑎; ∈ 𝒂 do
6: Optimise, using for example the BFGS algorithm, Eq. (1) with {ak}

as the only variable
7: end

Once the different facial parts are localised, the image

regions around both eyes are extracted, and their shape and
intensity distributions are normalised, so that a deep neural
network, based on [10], can infer the corresponding 3D gaze
vectors. Then, an overall gaze vector of the user is calculated
as the weighted mean vector of both eyes with its origin at the
midpoint of both eyes (see Algorithm 3).

Algorithm 3: Normalised left and right eye gaze vectors
estimation algorithm
Input:
• The image sequence I
• 2D left {e1, e2}l and right {e1, e2}r eye corner landmark positions,

throughout I
• The adjusted face model geometry and parameters, throughout I
• The pre-trained deep neural network for regressing 3D gazes from

normalised eye images
Output: The user’s normalised left and right eye gaze vectors estimation
{gl, gr}norm, throughout I
1: For each 𝐼% ∈ 𝑰 do
2: Calculate M for each eye (Eq. (2))
3: Obtain 𝐼"<=>

?@ABC for each eye (Eq. (3))
4: Obtain 𝐼"<=> for each eye (via image equalisation)
5: Mirror 𝐼"<=> for the eye not corresponding to that considered by the

regressor (left or right)
6: Process both 𝐼"<=> with the pre-trained deep neural network
7: Un-mirror the response for the mirrored eye image →

(𝒈F, 𝒈= "<=>
=CG)%

8: Apply the dominant eye and head rotation’s correction factor (Eq.
(4))	→ (𝒈F, 𝒈= "<=>

I<==CIJCK)%
9: Divide both regression results by their corresponding Euclidean

norms → (𝒈F, 𝒈= "<=>)%
10: end

The affine transformation matrix M is calculated as

follows:

𝛼 𝛽 1 − 𝛼 ∙ 𝑐Q − 𝛽 ∙ 𝑐R
−𝛽 𝛼 𝛽 ∙ 𝑐Q + (1 − 𝛼) ∙ 𝑐R

 (2)

where:

• 𝛼 = 𝑠 ∙ cos	(𝜃)
• 𝛽 = 𝑠 ∙ sin	(𝜃)
• 𝑠 = (𝑤 − 2 ∙ 𝑚!)
• 𝜃 refers the horizontal rotation angle of the line that

connects both eye corners.
• {cx, cy} are the image coordinates of the centre of

rotation in the source image.

Then, the source image Iinput is transformed, that is to
say, normalised in shape, using the matrix M, as follows.

𝐼"<=>
?@ABC 𝑥, 𝑦 =

 𝐼`"BaJ 𝑀!!𝑥 + 𝑀!2𝑦 + 𝑀!c,𝑀2!𝑥 + 𝑀22𝑦 + 𝑀2c (3)

It must be noted that the applied eye shape
normalisation procedure usually results in distorted images;
normally, the further the user’s face is with respect to frontal
viewpoints, i.e., the most distant eye’s appearance may look,
normally, the more distorted the images become.

As a matter of example, Fig. 4 shows three examples
of the distortion that happens in the normalised appearance of
distant eyes in non-frontal faces, when the head’s yaw angle
is changed. As can be observed, the green points do not match
exactly the white ones because the deformability of the
graphical object is not perfect. At most, e is minimised (Eq.
(1)). Consequently, this distortion may affect in stability of
the estimated gaze for different yaw rotation angles of the
head. A similar instability may also happen for different pitch
angles, but in a lower degree.

Fig. 4. Examples of the distortion that happens in the
normalised appearance of the most distant eyes in non-
frontal faces, when the head’s yaw angle is changed

Thus, in order to reduce this effect, the vectors
obtained in the previous step (𝒈F, 𝒈= "<=>

=CG) are corrected by
a factor that gives more importance to the dominant eye (the
less distorted eye) and which is proportional to the head’s
pitch and yaw rotation angles, as follows:

𝒈F, 𝒈= "<=>

I<==CIJCK =

𝑤K ∙ 𝒈F, (1 − 	𝑤K) ∙ 𝒈= "<=>
=CG +

𝐾R ∙ (𝑟R − 𝑟Rf)
𝐾Q ∙ (𝑟Q − 𝑟Qf)

0
 (4)

where:
• 𝑤K is the weight of eye dominance.
• 𝑟Qf is the reference pitch angle.
• 𝑟Rf is the reference yaw angle.
• 𝐾Q is the proportionality constant for the pitch angle.
• 𝐾R is the proportionality constant for the yaw angle.

In the case of big out-of-plane head rotations where

both eye images are too distorted to be reliable, the gaze
estimation relies solely on the head direction. The values of
these parameters and ranges are experimentally determined,
depending on the final application. For instance, the reference

5

pitch and yaw angles could be the average values from those
observed during the image sequence, while the user’s head
poses are closer to frontal viewpoints, while the
proportionality constants could be determined based on the
observations of the gaze stability while the user is moving the
head, but maintaining the point of gaze. Finally, each vector
is divided by the Euclidean norm, so that to assure that the
resulting vectors have unit norm, and this way both
normalised gaze vectors are obtained.

It is remarkable that these 3D eye gaze vectors have
been obtained without any previous calibration e.g. without
any initialisation procedures. This is especially important in
applications requiring real-time monitoring of the eye gaze,
such as automotive applications.

Algorithm 4 shows how the eye gaze direction is
estimated with respect to the targets. First, the target
geometries are placed with respect to the camera’s coordinate
system, which is the same reference used for the face and eye
gaze vectors, already estimated in previous blocks. The
camera’s coordinate system has been previously pre-
established. In other words, it is assumed that the camera’s
coordinate system is well-known. A target is modelled or
referred to as a set of polygons formed by k points b and lines
l, and their corresponding planar surfaces {v, q} (where v is
the normal vector and q the distance from the origin) that
define the objects that need to be related with the user’s point
of gaze (e.g., a screen is represented by a rectangular plane).
Then, the 3D face model is placed in the scene with the
obtained parameters. Then, the normalised left and right eye
3D gaze vectors are transformed, so that they are referred to
the coordinate system of the camera (i.e., not to the
normalised camera viewpoint, as before). This is done by
removing the effect of the rotation angle q that was used for
the affine transformation applied to each normalised eye
shape, like this:

 𝑔F, 𝑔= =

− cos 𝜃 ∙ (𝑔F, 𝑔= "<=>)Q + 𝑠𝑖𝑛	(𝜃) ∙ (𝑔F, 𝑔= "<=>)R
− sin 𝜃 ∙ (𝑔F, 𝑔= "<=>)Q − 𝑐𝑜𝑠	(𝜃) ∙ (𝑔F, 𝑔= "<=>)R

(𝑔F, 𝑔= "<=>)l
 (5)

Then, both gaze vectors are combined by calculating
its geometric mean g, which it is assumed to be the user’s
overall gaze vector. The gaze vector may optionally be
filtered by taking into account its frame-to-frame motion and
an appropriate filtering method for eye movements. The
origin of this vector is preferably placed in the middle
position (mean value) of both eye centres from the 3D face,
Ɛ. Thus, the point of gaze PoG for each target plane can be
estimated, like this:

 𝑷𝒐𝑮𝒕 = Ɛ + (𝒒r𝒗∙Ɛ)
𝒗∙𝒈

∙ 𝒈 (6)

Finally, a point-in-polygon strategy [23] is applied to
see if any of the calculated PoGs lies within any of the screens.
As can be observed, the point-in-polygon strategy may result
in that the PoG goes through a polygon, or that it does not go
through any polygon. If it does not go through a polygon, the
method provides the closest polygon. For example, in line 11
of Alg. 4, if the PoG does not go through a polygon, the
distance to the polygon is stored. And in line 12, the current
measured distance is compared to the minimum measured
distance (which is the stored one), in order to guarantee that
the closest polygon is finally selected.

Algorithm 4: Target-related point of gaze estimation
algorithm
Input:
• The set of polygons formed by k points b and lines l, plane normal

vectors v and plane distances q with respect to the camera that
represent the target objects {𝒃𝒌, 𝒍𝒌, {𝒗, 𝒒}}J

• The adjusted face model geometry and parameters {t, r, s, a},
throughout I

• The user’s normalised left and right eye gaze vectors estimation {gl,
gr}norm, throughout I

Output: The user’s PoG with respect to the targets in the scene,
throughout I
1: Place the target polygons with {𝒃𝒌, 𝒍𝒌, {𝒗, 𝒒}}J
2: For each 𝐼% ∈ 𝑰 do
3: Place the 3D face model with {𝒕, 𝒓, 𝒔, 𝒂}%
4: Transform {gl, gr}norm with Eq. (5)	→ 𝒈F, 𝒈= %
5: Calculate the geometric mean vector → 𝒈%
6: (Optional) Filter 𝒈% with an appropriate approach for gaze

movements
7: 𝑑J>`" = 𝐵𝐼𝐺_𝑁𝑈𝑀𝐵𝐸𝑅
8: For each target t do
9: Calculate the point of gaze 𝑷𝒐𝑮𝒕	in the target’s plane (Eq. (6))
10: Apply a point-in-polygon strategy to the target’s polygon
11: If point-in-polygon test successful then	→ 𝑷𝒐𝑮𝒋 and break
12: Else store 𝑷𝒐𝑮𝒕 and distance to polygon 𝑑J
13: If 𝑑J < 𝑑J>`"then	→ 𝑷𝒐𝑮𝒋 = 𝑷𝒐𝑮𝒕
14: 𝑑J>`" = 𝑑J → 𝑷𝒐𝑮𝒋 = 𝑷𝒐𝑮𝒕
15: end
16: end
17: end

3. Results
We have evaluated our approach with an experiment

where 8 people have been recorded by a camera in front of
them, while using a driving simulator with three screens (Fig.
1). The participants were requested to look at different control
points located at zones of interest on the screens: (1) left
window, (2) left side mirror, (3) horizon, (4) road, (5)
navigation panel, (6) rear mirror and (7) right side mirror (Fig.
5). They were free to rotate their head as they considered (no
instructions were given about this). The accuracy of our
approach has been measured in this setup without including a
user-calibration stage. Thus, if the PoG obtained directly as
explained above lies within the targeted zone of interest, it is

Fig. 5. The considered zones of interest in the simulator to analyse the driver’s PoG.

 1

2

3

4 5

6

7

6

considered a correct response, wrong otherwise. Besides, we
measured the angle between the vector that goes from the
head to the targeted control point and from the head to the
estimated PoG.

Table 1 shows the obtained results, along with those
obtained by other state-of-the-art model-based [5][9] and
appearance-based [4][8][14] alternatives with similar setups
and conditions. Ideally, we would have reimplemented and
adapted to our setup all these approaches so that then we
could measure the differences under the same working
conditions. However, taking into account that there are many
implementation details that are not available in the
publications, which can be important for the reproduction of
the reported results, we have preferred to include them here
directly with their corresponding setups and accuracy metrics.
In some cases, they are given in degrees between the
estimated and ground-truth gaze vectors and in other with a
percentage of the number of times in which the correct gaze
zones are reached. In our case, we provide both metrics so
that it is easier to compare with the other approaches, despite
the differences among the setups and conditions.
Nevertheless, note that due to that reason this comparison is
more qualitative than quantitative, except for their own setups
with respect to their corresponding ground truth
measurements.

[9] has the most different setup as it uses two cameras
to capture the driver’s data, and hence, it has the possibility
of estimating 3D features directly and thus improve the
accuracy, compared to the monocular case. However, we
prefer to avoid this kind of setups in order to simplify the
installation and configuration (i.e., calibration) and reduce the
power consumption.

In the case of [5], it follows a similar scope to ours,
using facial feature tracking, 3D head pose and gaze
estimation, but with some relevant differences. The head pose
estimation algorithm is based on the ‘weak-perspective’
assumption, which with the kind of images obtained in this
setup produces an inherent error due the orthographic
projection that needs to be compensated. On the other hand,
its proposed gaze vector estimation procedure is model-based,
which has the drawbacks already stated before.

Both [4] and [8] rely on classifiers trained with the
relations between gaze zones and feature descriptors
composed by 2D facial part and ocular image cues. The
drawback of this kind of approaches is that, as they do not
estimate 3D data, they need to be specifically trained for each
setup, and provide more limited information for behaviour
analysis.

[14] relies on a deep neural network to estimate the 3D
gaze vector, in similar way as we do, but including both the

normalized eye appearance and the head orientation as input
data for the network. In this case, the approach is evaluated
with people looking at a laptop screen, so no profile views are
contemplated like those that occur in our case when users
look at the side screens and the eye appearances get distorted.

In our case, it can be seen that we obtain sufficient
accuracy to relate rendered graphics with the user’s
observations, despite not having calibrated the system for
each user. As expected, the accuracy is lower for the side
screens, but still high enough (Fig. 6). Anyway, these errors
should be considered when designing the recognition areas
for the interaction with the elements of the scene, i.e., for
higher errors the area of interaction around the element
should be bigger too. Fig. 7 shows that our approach can
handle quick eye movements, but maintaining a low level of
noise for fixations.

Fig. 6. Confusion matrix of the predictions obtained by our
approach for the considered gaze zones

Fig. 7. An example of PoGx signal where saccades and
fixations can be appreciated, along with the level of noise

Predicted Region

Tr
ue

 R
eg

io
n

Table 1 Comparison among different state-of-the-art eye gaze estimation systems and ours

Method
category

Paper reference Setup Accuracy metrics
(Mean % and/or º)

Model-based [5] 1 camera, 1 IR illuminator and 18 gaze zones, considering day
(no-glasses/glasses/sun-glasses) and night (no-glasses/glasses)

scenarios

>95% on-the-road
>90% off-the-road
(for all scenarios)

 [9] 3 cameras (2 facing driver, 1 looking out) and 6 gaze zones 94.9%
Appearance-

based
[4] 1 camera and 8 gaze zones 92.75%

 [8] 1 camera and 6 gaze zones 94.6%
 [14] 1 camera and 20 on-screen positions 10.8º (cross-dataset evaluation)

Hybrid Ours 1 camera and 7 gaze zones 97.0% / 4.6º (front screen)
87.7% / 11.5º (side screens)

7

On the other hand, in order to evaluate the efficiency
of our approach and its suitability for running it in devices
which can then be used in real vehicles, where one cannot
expect installing CPUs/GPUs like those of desktop/laptop
PCs, we have integrated it in an app for smartphones with iOS
and Android operating systems (Fig. 8). It is remarkable to
state that the operating system can also have an impact in the
overall performance of the app, due to the multi-level
structure and different programming languages in which the
app needs to be programmed (i.e., the core of the approach is
programmed in C++ for both operating systems, while the
interface is in Objective-C for iOS and Java for Android).
More specifically, we have tested the iOS app in an iPhone
SE (with iOS 10.3.2) and the Android app in a Docomo
smartphone (with Android 6). The measured average FPS
(frames-per-second) of our app in each case has been 30 and
20 respectively, which reveals the efficiency and suitability
of our approach to be applied in a real-world scenario.

4. Conclusion
One of the advantages of our approach is that with a

simple setup we can efficiently estimate the PoG of the user
in multiple screens of a simulator, allowing to relate directly
the rendered graphics that represent the different elements of
the scene with the user’s observations.

Moreover, as the rendered scene simulates a physical
car environment with a distribution close to a real case, this
approach is suitable to be used inside a driving situation. In a
real scenario, the zones in the rendered scene fit with the key
attention zones considered while driving (with some
variations depending on the car). This way it is easier to
generate richer data for developing driving behaviour
analysis approaches.

Another advantage is that it can be integrated,
processed and executed in devices with low computational
capabilities, such as smartphones.

Future work will principally focus on optimizing the
deep neural network designs for the face detection, landmark
localization and eye gaze vector estimation stages to further
improve their efficiency in ARM-based CPUs.

We also plan to adapt the approach to real vehicle
setups. The primary challenge in a real driving scenario is the
illumination variability. Some image capture setups reduce
the illumination issues using specific hardware like infrared
cameras or a sort of optical filters. These changes call for
particular datasets to re-train some of the models (e.g. eye

gaze estimation model and face detection model), but the
method pipeline is not affected.

5. Acknowledgments
This work has received funding from the European

Research Council (ERC) under the European Union's
Horizon 2020 research and innovation programme (grant
agreement no. 690772, VI-DAS project).

6. References
[1] Kar, A. and Corcoran, P.: 'A review and analysis of eye-
gaze estimation systems, algorithms and performance
evaluation methods in consumer platforms', IEEE Access, 5,
2017, pp. 16495–16519

[2] Kasneci, E., Kasneci, G., Kübler, T. C., et al.: 'Online
recognition of fixations, saccades, and smooth pursuits for
automated analysis of traffic hazard perception', Artificial
Neural Networks, Springer Series in Bio-/Neuroinformatics,
4, 2015, pp. 411–434

[3] Liang, Y., Reyes, M. L., Lee, J. D.: 'Real-time detection
of driver cognitive distraction using support vector
machines', IEEE Trans. Intell. Transp. Syst., 8, (2), 2007,
pp. 340–350

[4] Chuang, M.-C., Bala, R., Bernal, E., et al.: 'Estimating
gaze direction of vehicle drivers using a smartphone
camera', Proc. IEEE Conf. Comput. Vis. Pattern Recogn.
Work. (CVPRW), 2014, pp. 165–170

[5] Vicente, F., Huang, Z., Xiong, X., et al.: 'Driver gaze
tracking and eyes off the road detection system', IEEE
Trans. Intell. Transp. Syst., 16, (4), 2015, pp. 2014–2027

[6] Zheng, R., Nakano, K., Ishiko, H., et al.: 'Eye-gaze
tracking analysis of driver behavior while interacting with
navigation systems in an urban area', IEEE Trans. Human-
Mach. Syst., 46, (4), 2016, pp. 546–556

[7] Jha, S., Busso, C.: 'Analyzing the relationship between
head pose and gaze to model driver visual attention', Proc.
IEEE Int. Conf. Intell. Transp. Syst. (ITSC), 2016, pp. 1–6

[8] Fridman, L., Lee, J., Reimer, B., et al.: 'Owl and Lizard:
Patterns of head pose and eye pose in driver gaze
classification', IET Comput. Vis., 10, (4), 2016, pp. 308–313

Fig. 8. Examples of the approach running in an iPhone SE, while the user puts thick glasses on and
the system keeps working

8

[9] Tawari, A., Chen, K. H. and Trivedi, M. M.: 'Where is
the driver looking: Analysis of head, eye and iris for robust
gaze zone estimation', Proc. Int. IEEE Conf. Intell. Transp.
Syst., 2014, pp. 988–94

[10] Zhang, X., Sugano, Y., Fritz, M. et al.: 'Appearance-
based gaze estimation in the wild', Proc. IEEE Conf.
Comput. Vis. Pattern Recogn. (CVPR), 2015, pp. 4511–
4520

[11] Wood, E., Baltrusaitis, T., Zhang, X., et al.: 'Rendering
of eyes for eye-shape registration and gaze estimation', Proc.
IEEE Int. Conf. Comp. Vis. Pattern Recogn. (CVPR), 2015,
pp. 3756–3764

[12] Shrivastava, A., Pfister, T., Tuzel, O., et al.: 'Learning
from simulated and unsupervised images through
adversarial training', Proc. IEEE Conf. Comp. Vis. Pattern
Recogn. (CVPR), 3, 2017, pp. 2242–2251.

[13] Ranjan, R., De Mello, S. and Kautz, J.: 'Light-weight
head pose invariant gaze tracking', Proc. IEEE Conf. Comp.
Vis. Pattern Recogn. (CVPR), 2018, pp. 1–9

[14] Zhang, X., Sugano, Y., Fritz, M., et al.: 'MPIIGaze:
Real-world dataset and deep appearance-based gaze
estimation', IEEE Trans. Pattern Anal. Mach. Intell., 2017

[15] Liu, W., Anguelov, D., Erhan, D., et al.: 'SSD: Single
shot multibox detector', Proc. European Conf. Comput. Vis.
(ECCV), 2016, pp. 21–37

[16] Baltrusaitis, T. Morency, L.-P., Robinson, P.:
'Constrained local neural fields for robust facial landmark
detection in the wild', IEEE Conf. Comput. Vis. Workshops
(ICCVW), 2013, pp. 354–361

[17] Levenberg, K.: 'A method for the solution of certain
non-linear problems in least squares', Quarterly of Appl.
Math., 2, 1944, pp. 164–168

[18] Marquardt, D.: 'An algorithm for least-squares
estimation of nonlinear parameters'. SIAM J. Appl. Math.,
11, (2), 1963, pp. 431–441

[19] Broyden, C. G.: 'The convergence of a class of double
rank minimization algorithms: 2. The New algorithm', J.
Inst. Math. Appl., 6, 1970, pp. 222–231

[20] Fletcher, R.: 'A new approach to variable metric
algorithms', Computer J., 13, 1970, pp. 317–322

[21] Goldfarb, D.: 'A family of variable metric methods
derived by variational means', Math. Comp., 24, 1970, pp.
23–26

[22] Shanno, D. F.: 'Conditioning of quasi-Newton methods
for function minimization', Math. Comp., 24, 1970, pp. 647–
650

[23] Haines, E.: 'Point in polygon strategies', in Heckbert, P.
(Ed.): 'Graphics Gems IV' (Academic Press, 1994), pp. 24–
46

