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Abstract: In	this	work,	we	present	an	efficient	monocular	method	to	estimate	the	point	of	gaze	(PoG)	and	the	face	in	the	3D	
space	of	multi-screen	driving	simulator	users,	for	driver	behaviour	analysis.	It	consists	in	a	hybrid	procedure	that	combines	
appearance	and	model-based	computer	vision	techniques	to	extract	the	3D	geometric	representations	of	the	user’s	face	
and	gaze	directions.	These	are	placed	in	the	same	virtual	3D	space	as	those	of	the	monocular	camera	and	the	screens.	In	
this	context,	the	intersections	of	the	overall	3D	gaze	vector	with	the	planes	that	contain	each	screen	is	calculated	with	an	
efficient	line-plane	intersection	geometric	procedure.	Finally,	a	point-in-polygon	strategy	is	applied	to	see	if	any	of	the	
calculated	PoGs	lies	within	any	of	the	screens,	and	if	not,	the	PoG	on	the	same	plane	as	that	of	the	closest	screen	is	
provided.	Experiments	show	that	the	error	for	the	obtained	PoG	accuracy	is	reasonable	for	automotive	applications,	even	
in	the	uncalibrated	case,	compared	to	other	state-of-the-art	approaches,	which	require	the	user’s	calibration.	Another	
advantage	is	that	it	can	be	integrated	in	devices	with	low	computational	capabilities,	such	as	smartphones,	with	sufficient	
robustness	for	driver	behaviour	analysis.	
 

1. Introduction 
Typically, state-of-the-art eye gaze estimation 

techniques obtain the point of gaze (PoG) on one screen, only 
[1]. However, in the case of driving simulators there are 
usually more than one, e.g., one for the front view, one for 
each side view, another one for the dashboard, etc (Fig. 1). 
Besides, there can be different objects of interest at different 
locations of each screen and obtaining the gaze fixations and 
saccades, derived from the PoG, accurately on each screen is 
important for driver behaviour analysis [2]. Additionally, it is 
also preferable to simplify the installation and calibration of 
sensors and to reduce the power consumption as much as 
possible, avoiding alternative possibilities such as placing a 
dedicated PoG estimator for each screen. Thus, in our context, 
we only consider one monocular camera in front of the user 
and a humble CPU, e.g., those included in an embedded PC 
or a smartphone. 

 

 
Fig. 1.  Multi-screen simulator setup for driver behaviour 
analysis, based on human-machine interaction, including 
PoG and 3D face tracking 

In automotive platforms, visual features of the face 
and eye regions of a driver provide cues about their degree of 
alertness, perception and vehicle control. Knowledge about 
driver cognitive state helps to predict, for example, if the 
driver intends to change lanes or is aware about obstacles and 
thereby avoid fatal accidents. These systems use eye tracking 
setups mounted on a car's dashboard along with computing 
hardware running machine vision algorithms, with 
computational capabilities far below from those of off-the-
shelf desktop PCs. Major sources of error in automotive 
systems arise principally from platform and user head 
movements, variable illumination, and occlusion due to 
shadows or users wearing glasses, which need to be handled 
robustly but also efficiently due to the computational 
constraints. 

The current state of the art of eye gaze estimation 
systems applied to automotive platforms includes different 
kind of approaches and uses. There are approaches that 
consider eye movement features (e.g., fixations, saccades, 
smooth pursuits, etc) for deriving driver cognitive states, such 
as driver distraction [3]. Other approaches apply 
classification techniques to eye images related with different 
gaze zones, to detect where the driver is looking at while 
driving [4]. There are also approaches that track facial 
features, 3D head poses and gaze directions relative to the car 
geometry to detect eyes-of-the road condition of the driver [5]. 
Other approaches study the driver’s gaze behaviour (e.g., 
glance frequency and glance time) to evaluate the driving 
performance when they interact with other devices (e.g., a 
portable navigation system) while driving [6]. Finally, there 
are also approaches that study the dynamics between head 
pose and gaze behaviour of drivers to predict gaze locations 
from the position and orientation of a driver's head [7] or to 
categorise different kind of driver behaviours while driving 
[8]. 

Our main motivation in this work is to increase the 
grade of sophistication of all this kind of use cases by 
developing a more accurate, more robust, but still efficient 
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method for estimating the head pose and eye gaze of drivers, 
compared to previous approaches. We paid special attention 
to the case of multi-screen simulators, where the relation 
between the PoG and the rendered graphics can be directly 
established, and therefore, richer data could be extracted for 
behaviour analysis. In order to do so, it is necessary to relate 
the 2D image projections of the driver’s facial and ocular cues, 
captured from the monocular camera, with the 3D space. 
Ideally, this would require not only obtaining the person’s 3D 
eye gaze vectors from the images, but also the person’s 3D 
eye positions and the surrounding potential targets’ 
geometries in the same 3D space, the camera characteristics 
from which that space is observed, and an additional 
calibration stage done by the user. However, in many 
applications it is not easy to obtain all these data. This is the 
case of automotive applications, where it is not comfortable 
for the driver to spend time calibrating the eye gaze system. 
Other important factors are that the estimated gaze vector 
should have a low level of noise, but it should still be sensitive 
to quick eye movements, and that the estimated gaze vector 
should be robust to head movements, which in the case of 
driving, normally happen many times. 

Our approach to tackle all these factors consists in a 
hybrid procedure that combines appearance and model-based 
computer vision techniques to extract the 3D geometric 
representations of the user’s face and gaze directions. These 
are then placed in the same virtual 3D space as those of the 
monocular camera and the screens. This reconstructed virtual 
3D world is where the driver’s behaviour can then be 
analysed, based on the estimated PoG on the different targets 
of the scene and the 3D head pose, without necessarily 
requiring calibration data. It has been designed to have an 
acceptable balance between accuracy, robustness and 
efficiency, so that it can be integrated into devices with low 
computational capabilities that might be used in vehicles. 

The rest of the paper is organised as follows. Section 
2 introduces the proposed hybrid system. Section 3 illustrates 
details about our experiments and presents some discussions 
about them. Section 4 concludes the paper. 

2. Methodology 
The methods to estimate the eye gaze from monocular 

images and videos can be categorised in two types of 
approaches: model-based [5][9] and appearance based 
[4][8][10][11][12][13][14]. Next, we study more in detail the 
pros and cons of each and then we explain our proposed 
hybrid approach. 

 
2.1. Model-based vs appearance-based 

 
The model-based approach relies explicitly in 3D 

graphical models that represent the geometry of the eye 
(typically as spheres) which are fitted to the person’s detected 
eye features in the image (typically, the iris and the eye 
corners). Thus, the fitted 3D model allows inferring the 3D 
eye gaze vector, which is then used to deduce where the 
person is looking at. These methods imply some drawbacks, 
such as: They require to precisely locate the iris of the eye in 
the image; this is often impossible, for example when the 
user’s eyes are not wide open, which is the normal case. In 
order to estimate the eye gaze direction, they need the user’s 
head coordinates system as reference. Therefore, the success 

of these methods is highly dependent on the precision with 
which the user’s head coordinates system has been localised. 
Besides, although simple, they require an initialisation 
scheme: the user needs to intentionally look at one or more 
points on a screen. Otherwise, eye vectors cannot be obtained 
with sufficient precision. In sum, since they are pure 
geometric methods, their precision is strongly dependent on 
the precision of the estimated eyeball and pupil centres. 
However, common images do not enable to obtain this 
information with high precision. 

On the contrary, the appearance-based approach 
establishes a direct relation between the person’s eye 
appearance and the corresponding eye gaze data of interest 
(e.g., the 3D eye gaze vector) by applying machine learning 
techniques. Thus, a dataset of annotated images is used to 
train a regression model, which is then used to deduce where 
the person is looking at, when applied to the person’s eye 
image extracted from the image. 

In the last few years, the appearance-based methods 
have been greatly benefited by the revolutionary results 
obtained by the emerging deep learning techniques in 
computer vision applications and have become the current 
state of the art in the field. They allow to generalise much 
better the learned relation between the eye appearance and the 
corresponding eye gaze data than alternative machine 
learning approaches (based on “handcrafted” image features 
and “shallow” layered learning architectures), when a huge 
dataset of annotated images is used for training. Typically, 
hundreds of thousands or even millions of samples are used, 
which may include real data [10][14], photorealistic synthetic 
data [11][13] or even a mixture of both [12]. This way, eye 
gaze direction estimation systems can obtain better accuracies 
with people whose appearance has not been included in the 
training of the regression model. 

However, an effective eye gaze direction estimation 
system does not only require obtaining accurate eye gaze data 
from eye images, but it also requires applying properly the 
eye gaze data to the environment, so that it is possible to 
deduce where the person is looking at. 

 
2.2. Hybrid approach 

 
Fig. 2 shows the general overview of the workflow of 

our approach, where the inputs are a monocular image 
grabbed by one camera in front of the user, a parametric 
deformable 3D face model (Fig. 3), the camera intrinsic 
parameters and the screen geometries. The outputs are his/her 
estimated PoG with respect to the considered screens and 
his/her facial mesh in the 3D space, which includes 
information about his/her head position, orientation and 
expression. In this workflow, we distinguish three blocks: (1) 
the 3D face model adjustment to the user’s face image, (2) the 
normalisation of the 3D gaze estimation and (3) the 
estimation of the eye gaze direction with respect to the targets. 

The first block comprises computer vision procedures 
to detect and track facial regions on the image, localise facial 
landmarks and fit the 3D face model to those landmarks, by 
optimising the following objective function: 

 
 e = arg min!

"
[𝑑% − 𝑝 𝑓, 𝑤, ℎ, 𝒕, 𝒓, 𝒔, 𝒂 %	]2"

%3!  (1) 
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where: 

• d = {d1, d2, d3, …} are the detected 2D landmark 
positions. 

• p= {p1, p2, p3, …} are the 2D projections of the 
corresponding 3D deformable model vertices. p is a 
function that depends on the camera parameters (f, 
w, h) and on the parameters of the graphical object 
(t, r, s, a). Function p represents the 2D projections 
on a surface of vertices, which are 3D. The goal is to 
minimise the distance between the detected 2D 
landmark positions in the image and the vertices of 
the projections.  

• f is the focal length of the camera from which the 
image was obtained. 

• w is the image pixel width. 
• h is the image pixel height. 
• t= {tx, ty, tz} are the XYZ positions of the face model 

with respect to the camera. 
• r= {rx, ry, rz} are the roll-pitch-yaw rotation angles 

of the face model with respect to the camera. 
• s= {s1, s2, s3, …} are the shape-related deformation 

parameters. 
• a= {a1, a2, a3, …} are the action-related deformation 

parameters. 
• n is the number of 2D landmark positions. 
• e is the residual error. 

 
Fig. 3.  A generic deformable 3D face model and some of its 
deformation parameters compatible with our method 

 
For the localisation of the user’s face region two stages 

are distinguished: (1) the initial face detection and posterior 

re-detections when the tracking is lost, and (2) the in-between 
face tracking. This is relevant as tracking algorithms typically 
are more efficient and require less memory than those for face 
detection. Thus, the face detection algorithm is only activated 
when the user’s face is not being tracked. The detection is 
done with the SSD deep neural network [15], which has 
shown to be robust under challenging conditions, trained 
specifically with multiple-pose faces. The tracking is based 
on CLNF [16], applied at landmark level, which has a good 
balance between computational cost and localisation 
reliability and stability. The landmark distribution is 
constrained by a parametric 3D face model, to avoid 
impossible human facial shapes. The tracking is considered 
to be lost when the image under the face region does not 
correspond to a human face, according to the learned face 
pattern (see Algorithms 1 and 2 for further details). 
 

Algorithm 1: Hybrid face model detection-tracking fitting 
algorithm 

Input: The image sequence I 
Output: The face model parameters {t, r, s, a} that overlap the model to 
the user’s face, throughout I 
1: For each 𝐼% ∈ 𝑰 do  
2: if Face detection needed then 
3: Reset the face model parameters of the graphical model to the 

neutral configuration 
4: Run the face region detector in the image  
5: Store the detected user’s face image patch and face region 
6: else 
7: Locate a stored face image patch in the image (via pattern 

matching)  
8: Verify that the located patch corresponds to a real face (via 

pattern classification) 
9: if Located face region contains a real face then 
10: Store the located face region 
11: end 
12: end 
13: if Face region available then  
14: Run the face landmark detector in the face region  
15: Adjust the 3D face model to the detected landmarks (Algorithm 

2) → {𝒕, 𝒓, 𝒔, 𝒂}%  
16: end 
17: end 
18: (Optional) Filter {t, r, s, a} with an appropriate approach for face 

movements 
 

	
	 	 	

	 	 	 	
	

Fig. 2.  Workflow of the multi-planar PoG estimation and 3D face tracking approach 
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Algorithm 2: Three-stage face model adjustment algorithm 
Input: 
• Set of 2D landmark positions d in the image 
• The relation list between the landmark and vertices 
• The camera parameters {f, w, h} 
Output: The face model parameters {t, r, s, a} that overlap the model to 
the user’s face 
1: Set the deformation parameters {s, a} to zero 
2: Convert the current parameter values to the normalised range 

workspace  
3: Optimise, using for example the Levenberg-Marquardt algorithm 

[17][18], Eq. (1) with {t, r} as the only variables 
4: Optimise, using for example the BFGS algorithm [19][20][21][22], 

Eq. (1) with {s} as the only variables 
5: For each 𝑎; ∈ 𝒂 do 
6: Optimise, using for example the BFGS algorithm, Eq. (1) with {ak} 

as the only variable 
7: end 

 
Once the different facial parts are localised, the image 

regions around both eyes are extracted, and their shape and 
intensity distributions are normalised, so that a deep neural 
network, based on [10], can infer the corresponding 3D gaze 
vectors. Then, an overall gaze vector of the user is calculated 
as the weighted mean vector of both eyes with its origin at the 
midpoint of both eyes (see Algorithm 3). 
 

Algorithm 3: Normalised left and right eye gaze vectors 
estimation algorithm 
Input: 
• The image sequence I 
• 2D left {e1, e2}l and right {e1, e2}r eye corner landmark positions, 

throughout I  
• The adjusted face model geometry and parameters, throughout I 
• The pre-trained deep neural network for regressing 3D gazes from 

normalised eye images  
Output: The user’s normalised left and right eye gaze vectors estimation 
{gl, gr}norm, throughout I 
1: For each 𝐼% ∈ 𝑰 do 
2: Calculate M for each eye (Eq. (2))  
3: Obtain 𝐼"<=>

?@ABC  for each eye (Eq. (3)) 
4: Obtain 𝐼"<=>  for each eye (via image equalisation) 
5: Mirror 𝐼"<=>  for the eye not corresponding to that considered by the 

regressor (left or right) 
6: Process both 𝐼"<=>  with the pre-trained deep neural network  
7: Un-mirror the response for the mirrored eye image →

( 𝒈F, 𝒈= "<=>
=CG )%  

8: Apply the dominant eye and head rotation’s correction factor (Eq. 
(4))	→ ( 𝒈F, 𝒈= "<=>

I<==CIJCK)%  
9: Divide both regression results by their corresponding Euclidean 

norms → ( 𝒈F, 𝒈= "<=>)%  
10: end 

 
The affine transformation matrix M is calculated as 

follows: 
 

 
𝛼 𝛽 1 − 𝛼 ∙ 𝑐Q − 𝛽 ∙ 𝑐R
−𝛽 𝛼 𝛽 ∙ 𝑐Q + (1 − 𝛼) ∙ 𝑐R

 (2) 

 
where: 

• 𝛼 = 𝑠 ∙ cos	(𝜃) 
• 𝛽 = 𝑠 ∙ sin	(𝜃) 
• 𝑠 = (𝑤 − 2 ∙ 𝑚!) 
• 𝜃 refers the horizontal rotation angle of the line that 

connects both eye corners. 
• {cx, cy} are the image coordinates of the centre of 

rotation in the source image.  

Then, the source image Iinput is transformed, that is to 
say, normalised in shape, using the matrix M, as follows. 
 

𝐼"<=>
?@ABC 𝑥, 𝑦 = 

 𝐼`"BaJ 𝑀!!𝑥 + 𝑀!2𝑦 + 𝑀!c,𝑀2!𝑥 + 𝑀22𝑦 + 𝑀2c  (3) 
 

It must be noted that the applied eye shape 
normalisation procedure usually results in distorted images; 
normally, the further the user’s face is with respect to frontal 
viewpoints, i.e., the most distant eye’s appearance may look, 
normally, the more distorted the images become.  

As a matter of example, Fig. 4 shows three examples 
of the distortion that happens in the normalised appearance of 
distant eyes in non-frontal faces, when the head’s yaw angle 
is changed. As can be observed, the green points do not match 
exactly the white ones because the deformability of the 
graphical object is not perfect. At most, e is minimised (Eq. 
(1)). Consequently, this distortion may affect in stability of 
the estimated gaze for different yaw rotation angles of the 
head. A similar instability may also happen for different pitch 
angles, but in a lower degree. 
 

 
Fig. 4.  Examples of the distortion that happens in the 
normalised appearance of the most distant eyes in non-
frontal faces, when the head’s yaw angle is changed 
 

Thus, in order to reduce this effect, the vectors 
obtained in the previous step ( 𝒈F, 𝒈= "<=>

=CG ) are corrected by 
a factor that gives more importance to the dominant eye (the 
less distorted eye) and which is proportional to the head’s 
pitch and yaw rotation angles, as follows: 

 
𝒈F, 𝒈= "<=>

I<==CIJCK = 

𝑤K ∙ 𝒈F, (1 − 	𝑤K) ∙ 𝒈= "<=>
=CG +

𝐾R ∙ (𝑟R − 𝑟Rf)
𝐾Q ∙ (𝑟Q − 𝑟Qf)

0
 (4) 

where: 
• 𝑤K is the weight of eye dominance. 
• 𝑟Qf is the reference pitch angle. 
• 𝑟Rf is the reference yaw angle. 
• 𝐾Q is the proportionality constant for the pitch angle. 
• 𝐾R is the proportionality constant for the yaw angle. 

 
In the case of big out-of-plane head rotations where 

both eye images are too distorted to be reliable, the gaze 
estimation relies solely on the head direction. The values of 
these parameters and ranges are experimentally determined, 
depending on the final application. For instance, the reference 
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pitch and yaw angles could be the average values from those 
observed during the image sequence, while the user’s head 
poses are closer to frontal viewpoints, while the 
proportionality constants could be determined based on the 
observations of the gaze stability while the user is moving the 
head, but maintaining the point of gaze. Finally, each vector 
is divided by the Euclidean norm, so that to assure that the 
resulting vectors have unit norm, and this way both 
normalised gaze vectors are obtained. 

It is remarkable that these 3D eye gaze vectors have 
been obtained without any previous calibration e.g. without 
any initialisation procedures. This is especially important in 
applications requiring real-time monitoring of the eye gaze, 
such as automotive applications. 

Algorithm 4 shows how the eye gaze direction is 
estimated with respect to the targets. First, the target 
geometries are placed with respect to the camera’s coordinate 
system, which is the same reference used for the face and eye 
gaze vectors, already estimated in previous blocks. The 
camera’s coordinate system has been previously pre-
established. In other words, it is assumed that the camera’s 
coordinate system is well-known. A target is modelled or 
referred to as a set of polygons formed by k points b and lines 
l, and their corresponding planar surfaces {v, q} (where v is 
the normal vector and q the distance from the origin) that 
define the objects that need to be related with the user’s point 
of gaze (e.g., a screen is represented by a rectangular plane). 
Then, the 3D face model is placed in the scene with the 
obtained parameters. Then, the normalised left and right eye 
3D gaze vectors are transformed, so that they are referred to 
the coordinate system of the camera (i.e., not to the 
normalised camera viewpoint, as before). This is done by 
removing the effect of the rotation angle q that was used for 
the affine transformation applied to each normalised eye 
shape, like this: 

 𝑔F, 𝑔= =

− cos 𝜃 ∙ ( 𝑔F, 𝑔= "<=>)Q + 𝑠𝑖𝑛	(𝜃) ∙ ( 𝑔F, 𝑔= "<=>)R
− sin 𝜃 ∙ ( 𝑔F, 𝑔= "<=>)Q − 𝑐𝑜𝑠	(𝜃) ∙ ( 𝑔F, 𝑔= "<=>)R

( 𝑔F, 𝑔= "<=>)l
 (5) 

Then, both gaze vectors are combined by calculating 
its geometric mean g, which it is assumed to be the user’s 
overall gaze vector. The gaze vector may optionally be 
filtered by taking into account its frame-to-frame motion and 
an appropriate filtering method for eye movements. The 
origin of this vector is preferably placed in the middle 
position (mean value) of both eye centres from the 3D face, 
Ɛ. Thus, the point of gaze PoG for each target plane can be 
estimated, like this: 
 

 𝑷𝒐𝑮𝒕 = Ɛ + (𝒒r𝒗∙Ɛ)
𝒗∙𝒈

∙ 𝒈 (6) 

Finally, a point-in-polygon strategy [23] is applied to 
see if any of the calculated PoGs lies within any of the screens. 
As can be observed, the point-in-polygon strategy may result 
in that the PoG goes through a polygon, or that it does not go 
through any polygon. If it does not go through a polygon, the 
method provides the closest polygon. For example, in line 11 
of Alg. 4, if the PoG does not go through a polygon, the 
distance to the polygon is stored. And in line 12, the current 
measured distance is compared to the minimum measured 
distance (which is the stored one), in order to guarantee that 
the closest polygon is finally selected.  
 

Algorithm 4: Target-related point of gaze estimation 
algorithm 
Input: 
• The set of polygons formed by k points b and lines l, plane normal 

vectors v and plane distances q with respect to the camera that 
represent the target objects {𝒃𝒌, 𝒍𝒌, {𝒗, 𝒒}}J 

• The adjusted face model geometry and parameters {t, r, s, a}, 
throughout I 

• The user’s normalised left and right eye gaze vectors estimation {gl, 
gr}norm, throughout I 

Output: The user’s PoG with respect to the targets in the scene, 
throughout I 
1: Place the target polygons with {𝒃𝒌, 𝒍𝒌, {𝒗, 𝒒}}J 
2: For each 𝐼% ∈ 𝑰 do 
3: Place the 3D face model with {𝒕, 𝒓, 𝒔, 𝒂}%  
4: Transform {gl, gr}norm with Eq. (5)	→ 𝒈F, 𝒈= %  
5: Calculate the geometric mean vector → 𝒈%  
6: (Optional) Filter 𝒈%  with an appropriate approach for gaze 

movements 
7: 𝑑J>`" = 𝐵𝐼𝐺_𝑁𝑈𝑀𝐵𝐸𝑅  
8: For each target t do  
9: Calculate the point of gaze 𝑷𝒐𝑮𝒕	in the target’s plane (Eq. (6)) 
10: Apply a point-in-polygon strategy to the target’s polygon 
11: If point-in-polygon test successful then	→ 𝑷𝒐𝑮𝒋 and break 
12: Else store 𝑷𝒐𝑮𝒕 and distance to polygon 𝑑J  
13: If 𝑑J < 𝑑J>`"then	→ 𝑷𝒐𝑮𝒋 = 𝑷𝒐𝑮𝒕  
14:  𝑑J>`" = 𝑑J → 𝑷𝒐𝑮𝒋 = 𝑷𝒐𝑮𝒕 
15: end 
16: end 
17: end 

 

3. Results 
We have evaluated our approach with an experiment 

where 8 people have been recorded by a camera in front of 
them, while using a driving simulator with three screens (Fig. 
1). The participants were requested to look at different control 
points located at zones of interest on the screens: (1) left 
window, (2) left side mirror, (3) horizon, (4) road, (5) 
navigation panel, (6) rear mirror and (7) right side mirror (Fig. 
5). They were free to rotate their head as they considered (no 
instructions were given about this). The accuracy of our 
approach has been measured in this setup without including a 
user-calibration stage. Thus, if the PoG obtained directly as 
explained above lies within the targeted zone of interest, it is 

Fig. 5.  The considered zones of interest in the simulator to analyse the driver’s PoG. 
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considered a correct response, wrong otherwise. Besides, we 
measured the angle between the vector that goes from the 
head to the targeted control point and from the head to the 
estimated PoG. 

Table 1 shows the obtained results, along with those 
obtained by other state-of-the-art model-based [5][9] and 
appearance-based [4][8][14] alternatives with similar setups 
and conditions. Ideally, we would have reimplemented and 
adapted to our setup all these approaches so that then we 
could measure the differences under the same working 
conditions. However, taking into account that there are many 
implementation details that are not available in the 
publications, which can be important for the reproduction of 
the reported results, we have preferred to include them here 
directly with their corresponding setups and accuracy metrics. 
In some cases, they are given in degrees between the 
estimated and ground-truth gaze vectors and in other with a 
percentage of the number of times in which the correct gaze 
zones are reached. In our case, we provide both metrics so 
that it is easier to compare with the other approaches, despite 
the differences among the setups and conditions. 
Nevertheless, note that due to that reason this comparison is 
more qualitative than quantitative, except for their own setups 
with respect to their corresponding ground truth 
measurements. 

[9] has the most different setup as it uses two cameras 
to capture the driver’s data, and hence, it has the possibility 
of estimating 3D features directly and thus improve the 
accuracy, compared to the monocular case. However, we 
prefer to avoid this kind of setups in order to simplify the 
installation and configuration (i.e., calibration) and reduce the 
power consumption. 

In the case of [5], it follows a similar scope to ours, 
using facial feature tracking, 3D head pose and gaze 
estimation, but with some relevant differences. The head pose 
estimation algorithm is based on the ‘weak-perspective’ 
assumption, which with the kind of images obtained in this 
setup produces an inherent error due the orthographic 
projection that needs to be compensated. On the other hand, 
its proposed gaze vector estimation procedure is model-based, 
which has the drawbacks already stated before. 

Both [4] and [8] rely on classifiers trained with the 
relations between gaze zones and feature descriptors 
composed by 2D facial part and ocular image cues. The 
drawback of this kind of approaches is that, as they do not 
estimate 3D data, they need to be specifically trained for each 
setup, and provide more limited information for behaviour 
analysis. 

[14] relies on a deep neural network to estimate the 3D 
gaze vector, in similar way as we do, but including both the 

normalized eye appearance and the head orientation as input 
data for the network. In this case, the approach is evaluated 
with people looking at a laptop screen, so no profile views are 
contemplated like those that occur in our case when users 
look at the side screens and the eye appearances get distorted. 

In our case, it can be seen that we obtain sufficient 
accuracy to relate rendered graphics with the user’s 
observations, despite not having calibrated the system for 
each user. As expected, the accuracy is lower for the side 
screens, but still high enough (Fig. 6). Anyway, these errors 
should be considered when designing the recognition areas 
for the interaction with the elements of the scene, i.e., for 
higher errors the area of interaction around the element 
should be bigger too. Fig. 7 shows that our approach can 
handle quick eye movements, but maintaining a low level of 
noise for fixations. 

 

 
Fig. 6.  Confusion matrix of the predictions obtained by our 
approach for the considered gaze zones 
 

 
Fig. 7.  An example of PoGx signal where saccades and 
fixations can be appreciated, along with the level of noise 
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Table 1 Comparison among different state-of-the-art eye gaze estimation systems and ours 

Method 
category 

Paper reference Setup Accuracy metrics 
(Mean % and/or º) 

Model-based [5] 1 camera, 1 IR illuminator and 18 gaze zones, considering day 
(no-glasses/glasses/sun-glasses) and night (no-glasses/glasses) 

scenarios 

>95% on-the-road 
>90% off-the-road 
(for all scenarios) 

 [9] 3 cameras (2 facing driver, 1 looking out) and 6 gaze zones 94.9% 
Appearance-

based 
[4] 1 camera and 8 gaze zones 92.75% 

 [8] 1 camera and 6 gaze zones 94.6% 
 [14] 1 camera and 20 on-screen positions 10.8º (cross-dataset evaluation) 

Hybrid Ours 1 camera and 7 gaze zones 97.0% / 4.6º (front screen) 
87.7% / 11.5º (side screens) 
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On the other hand, in order to evaluate the efficiency 
of our approach and its suitability for running it in devices 
which can then be used in real vehicles, where one cannot 
expect installing CPUs/GPUs like those of desktop/laptop 
PCs, we have integrated it in an app for smartphones with iOS 
and Android operating systems (Fig. 8). It is remarkable to 
state that the operating system can also have an impact in the 
overall performance of the app, due to the multi-level 
structure and different programming languages in which the 
app needs to be programmed (i.e., the core of the approach is 
programmed in C++ for both operating systems, while the 
interface is in Objective-C for iOS and Java for Android). 
More specifically, we have tested the iOS app in an iPhone 
SE (with iOS 10.3.2) and the Android app in a Docomo 
smartphone (with Android 6). The measured average FPS 
(frames-per-second) of our app in each case has been 30 and 
20 respectively, which reveals the efficiency and suitability 
of our approach to be applied in a real-world scenario. 

4. Conclusion 
One of the advantages of our approach is that with a 

simple setup we can efficiently estimate the PoG of the user 
in multiple screens of a simulator, allowing to relate directly 
the rendered graphics that represent the different elements of 
the scene with the user’s observations.  

Moreover, as the rendered scene simulates a physical 
car environment with a distribution close to a real case, this 
approach is suitable to be used inside a driving situation. In a 
real scenario, the zones in the rendered scene fit with the key 
attention zones considered while driving (with some 
variations depending on the car). This way it is easier to 
generate richer data for developing driving behaviour 
analysis approaches. 

Another advantage is that it can be integrated, 
processed and executed in devices with low computational 
capabilities, such as smartphones. 

Future work will principally focus on optimizing the 
deep neural network designs for the face detection, landmark 
localization and eye gaze vector estimation stages to further 
improve their efficiency in ARM-based CPUs.  

We also plan to adapt the approach to real vehicle 
setups. The primary challenge in a real driving scenario is the 
illumination variability. Some image capture setups reduce 
the illumination issues using specific hardware like infrared 
cameras or a sort of optical filters. These changes call for 
particular datasets to re-train some of the models (e.g. eye 

gaze estimation model and face detection model), but the 
method pipeline is not affected. 
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